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Abstract. Spin systems are considered on sequences of lattices of increasing dimensionality. 
By dividing the lattices into suitable clusters with fixed internal interactions and scaling 
the external spin interactions inversely with the lattice dimension d, it is shown that the 
Oguchi effective field approximation becomes exact in the limit d +CO. 

1. Introduction 

For spin systems on hypercubic lattices, it is known (Pearce and Thompson 1978) 
that, if all the nearest-neighbour interactions are scaled inversely with the lattice 
dimension d, then the mean-field theory becomes exact in the limit d + 00. Mean-field 
theory, however, is only the first in a whole hierarchy of effective field approximations 
(Smart 1966) including the Oguchi, constant coupling and Bethe approximations. 

In this paper we will be concerned with the Oguchi approximation (Oguchi 1955). 
For the spin-; Ising model, Bowers (1981) has recently shown that the results of this 
approximation can be obtained by solving a model with repeated clusters of spins 
interacting via long-range interactions of equivalent neighbour type. Here we show 
that the Oguchi approximation can in fact be obtained exactly, without resorting to 
artificial long-range interactions, by solving a model with nearest-neighbour interac- 
tions on a d-dimensional lattice in the limit d + 00. 

The rest of this section is devoted to a precise statement of the results for Ising-type 
(one-component) models. The methods are quite general, however, and, in the context 
of mean-field theory (i.e. single-site clusters), have previously been applied to n-vector 
(Thompson and Silver 1973), quantum Heisenberg (Pearce and Thompson 1975) and 
Potts models (Cant and Pearce 1983). The results on the Oguchi approximation are 
proved in 09 2 and 3 by obtaining upper and lower bounds on the Ising model free 
energy that coalesce with the Oguchi free energy in the limit d + 00. 

Suppose we are given a regular d-dimensional periodic lattice A with the sites 
divided into disjoint clusters c1, c2, . . . , etc so that A = cI. Suppose further that, 
aside from location, these clusters are identical and are chosen and distributed in such 
a way that each lattice site is equivalent. A regular (d+l)-dimensional periodic lattice 
can then be formed by stacking these d-dimensional lattices, one immediately on top 
of the other, and identifying the top and bottom layers. In this way a sequence of 
higher and higher dimensional lattices is generated with d tending to infinity. 

@ 1983 The Institute of Physics 1475 



1476 P A  Pearce 

For each member of this sequence we consider the Hamiltonian H given by 

H = -  J1,u,uJ-h U, 
(1,J)ER I €  \ 

where ci E [-1, 11 is an Ising spin assigned to each site i ,  and the sum over (i, j )  extends 
over the set B of all nearest-neighbour pairs (i.e. bonds) of the lattice. In particular, 
we are interested in interactions of the form 

where C is the set of all bonds within clusters and its complement = B - C is the 
totality of bonds between clusters. We will always assume that J, K and the external 
magnetic field h are positive. 

For a finite lattice of N clusters, each with n spins, the partition function is 

1 nN 

- 1  i = 1  
Z n N  = [ . . [ n dv(u , )  exp(-PH)=Tr exp(-PH) (1.3) 

where p = l /keT is the inverse temperature, dv(u)  is an (a pr ior i )  even probability 
measure on [-1, 11 and Tr (trace) denotes the multiple integral. For the spin-t Ising 
model, 

d v ( ~ ) = ~ [ S ( u + l ) + S ( ~ - l ) J  (1.4) 

and the integrals in (1.3) reduce to the familiar sums. In the thermodynamic limit 
( N  + m), the free energy per spin @ is given by 

It is now convenient to define the cluster Hamiltonian Hc(h) ,  for a prototypical 
cluster c, by 

where the sums are respectively over the bonds and sites in the cluster c. Given a 
Hamiltonian H, we also define expectations in the usual way by 

(. . .) = Tr . . . exp(-PH)/Tr exp(-PH). 

The result we prove can now be stated as follows. 

(1.7) 

Theorem. Let (I, be the free energy (1.5) for the Ising model specified by (1.1)-(1.3). 
Suppose also that the cluster Hamiltonian (1.6) satisfies the generalised Holder 
inequality 

for any XI,  x2, . . . , x ,  E R, where (. . .)c denotes the expectation (1.7) with respect to 
Hc(h) .  Then 

lim cci = $Oguchi 
d - m  
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where 

Before proceeding to the proof of the theorem some remarks are in order. 
(1) For n = 1, (1.8) holds trivially and (1.10) reduces to the familiar mean-field 

result. 
(2) For n = 2, i.e. clusters consisting of pairs of spins, (1.8) holds by the Schwarz 

inequality. More generally, the generalised Holder inequality (1 -8) holds whenever 
the cluster interactions are reflection positive (Frohlich and Lieb 1978, Frohlich et a1 
1978). In particular, we can therefore take the basic cluster to be a triangle, square, 
cube etc with interactions along the edges. The proof of (1.8) is illustrated for the 
case of a triangle in the appendix. 

(3) The number of spins in a cluster n can be allowed to tend to infinity with N. 
In this case (1.9) still holds provided the limit n +CO is taken on the RHS of (1.10). 
By reflection positivity, we can therefore take the clusters to be a whole line of spins 
or a ladder of spins etc with nearest-neighbour interactions. 

(4) An immediate corollary to the theorem is that, in the limit d + CO, the magnetisa- 
tion is also given by the corresponding Oguchi expression. Specifically, 

where the order of taking the limit and differentiating can be interchanged (Griffiths 
1964) because the free energy 4 is a concave function of h. The Oguchi magnetisation 
moguchi is the m that gives the minimum in (l . lO),  that is, it is the largest solution of 
the equation 

m = ( a i ) m  (1.12) 

where (. . .>m denotes the expectation (1.7) with respect to the cluster Hamiltonian 
H,(Jm + h ) .  

2. Upper bound on the free energy 

In this section we show that 

lim 4 5 4Oguch i .  

To begin we write the Hamiltonian (1.1) as 

d-m 

where 
H o = - K  1 aial-( . fm+h) 1 ul+tnN.fm2 

( 1 . I ) E C  Is 1 

H I  = - ( J / 2 d )  1 (m -a,)(m -U,). 
( I , l ) € ?  

Here m is arbitrary and 
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where 16.1 denotes the number of bonds in 6. = B - C, i.e. the number of bonds between 
clusters. 

If we define the expectation (. . .)a with respect to Ho as in (1.7), then Jensen's 
inequality tells us that 

ZnN = (exp(-PHdh Tr exp(-PHd 2 exp(-p(Hdo) Tr exp(-pHo). 

But 

(Hi)o = -(J/2d) 1 - ( m  -(ci)o)(m - ( c j i ) o )  
(i , jkC 

because 

(aiaj>o = ( ~ i i ) o ( ~ j ) O  

for i and j in different clusters. Choosing m to be a solution of the equation 

m = ( a i ) o  

where the RHS depends on m but is independent of i, we find that 

(Hi)o = 0. 

Combining (2.6) with (2.10) and using (2.3), it follows that 

- ( n N ) - ' l n Z n N ~ ~ p j m 2 - n - ' l n T r e x p  PK aia j+p( jm+h)  cui) 
(Like i s c  

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

where we have factored the trace over the N clusters. In particular, since (2.9) is just 
the condition for the RHS of (2.11) to be stationary with respect to variations in m, 
we conclude that 

(2.12) 

Recalling the definitions (1.5), (1.10) and (2.5), we now obtain the desired inequality 
(2.1) by taking the limits N + 00 and d + 00 and noticing that 

lim .f = J. (2.13) 
N,d-.oa 

In this limit, the stationary equation (2.9) then becomes identical to the equation (1.12). 

3. Lower bound on the free energy 

In this section we show that 

This time we begin by writing the Hamiltonian (1.1) as 
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where 

f ?=K-J /2d  

and 

i and j nearest neighbours 
otherwise 

(3.3) 

(3.4) 

is the adjacency matrix of the complete lattice. 
To proceed with the derivation of the lower bound we wish to replace the matrix 

(2d)-'A with a suitable positive definite matrix K. Since A is a cyclic matrix it can 
be diagonalised by a unitary matrix S, i.e. 

K ' A S  = diag(Ai) (3.5) 

where the hi are the eigenvalues of A. We now define the matrix K by 

Kij = (2d)-'/AIij +&Si, (3.6) 

where E > 0 and the non-negative definite matrix IAl is given by 

IAl = S diag(lAil)S-'. (3.7) 

Since IAl - A  is a non-negative definite matrix, it follows immediately that 

(3.8) 

We are now in a position to apply the standard indentity (Pearce andThompson 1978) 
to the right side of (3.8): Doing this we obtain 

(3.9) 

where the last sums are over the bonds and sites in the cluster cI. The generalised 
Holder inequality (1,8), with the denominators cancelled on either side, can now be 
applied to the trace in (3.9) to obtain 
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Maximising each term separately in the product occurring in (3.10), and performing 
the remaining Gaussian integrals, we find that 

Z, ,N s [Det(f - Z-~K)] -~ ' '  

(3.11) 

This manipulation is valid only if the matrix f -z-'K is positive definite, that is, if 
z > 1 + E .  This condition can be relaxed to z > 1 if we let E +O+.  In this limit (3.11) 
still holds with the matrix K replaced with the matrix (2d)-'lAI. 

Taking the thermodynamic limit N + CO, followed by the limits d +CO and z + 1+, 
in (3.11) using the definition (1.5) and the fact that 

lim k = K  
d - m  

we finally obtain the desired inequality (3.1) provided 

lim lim lim (nN)-' In Det(f - IAl/2dz) = 0. 
z - l +  d-m N - m  

(3.12) 

(3.13) 

This is proved in Pearce and Thompson (1978). 

Appendix 

In this appendix we prove the generalised Holder inequality (1.8) for a triangle of 
spins al, a2, a3 with pair interactions given by (1.6). Let us consider a reflection 
given by 

e la l  = a1 6 1 ~ 2  = a 3  e1a3 = u2 (Al l  

and define 0 2  and 633 similarly. Given a real function f =f(al, a2), it is then clear that 

(fm 3 0 (A21 

where elf =f(81al, e1a2) =f(al, a3). This is reflection positivity. From it, the Schwarz 
inequality 

where g = g(a1, a2) follows by the usual proof. 
Let us take 

1 f =  exp(+xlal + x z a z )  g = exp(zxlal +~3(+2) .  
Then the Schwarz inequality (A3) becomes 

(exp(xlal +x2a2  + ~ 3 a 3 ) ) ~  s ( e x p ( x l a 1 + x ~ a ~ + ~ ~ a ~ 3 ~ ~ t ' ~ ~ e x p ~ x ~ a ~  + x 3 a 2  +x3a3))Y2. 

By using similar inequalities for the other reflections, we thus obtain the symmetric 
inequality 

(A51 

i # j  
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where a product of six terms appears on the RHS. But now, setting x1 = x2 in (A5), 
we find 

(exp(xlal  +xl(TZ+X3(+3))c s (exp(xlal  + ~ ~ a ~ + ~ ~ ( + ~ ) ) ~ ’ ~ ~ e x p ( x ~ a ~  +X3~2+X303))f’2a 
(A71 

Combining this with the inequality obtained by interchanging x1 and x3 now leads to 
the inequality 

(exp(xla1 +x1m +x3a3)L(exp(xm +x3a2 + ~ 3 ( + 3 ) ) ~  

(exp(xlcr1 +x1m +x1c+3)),(ex~(x3c+l + x 3 m  + x 3 ~ 3 ) L .  (-48) 

Putting (A8) in (A6) then finally yields the desired inequality 
3 

(exp(xla1 +x2a2 +x3(+31)~ s n (exp(x,al + x m  + ~ , a 3 ) ) 2 ’ ~ .  (A91 
1 = 1  

References 

Bowers R G 1981 Physica lO8A 473-87 
Cant A and Pearce P A 1983 Commun. Math.  Phys. to appear 
Frohlich J, Israel R, Lieb E H and Simon B 1978 Commun. Math.  Phys. 62 1-34 
Frohlich J and Lieb E H 1978 Commun. Marh. Phys. 60 233-67 
Griffiths R B 1964 J. Math. Phys. 5 1215-22 
Oguchi T 1955 Prog. Theor. Phys. 13 148-59 
Pearce P A and Thompson C J 1975 Commun. Math.  Phys. 41 191-201 
- 1978 Commun. Marh. Phys. 58 131-8 
Smart J S 1966 Effecriue Field Theories of Magnerism (Philadelphia: Saunders) 
Thompson C J and Silver H 1973 Commun. Marh. Phys. 33 53-60 


